大学物理 ›› 2019, Vol. 38 ›› Issue (5): 20-.doi: 10.16854 /j.cnki.1000-0712.180406

• 教学讨论 • 上一篇    下一篇

密绕椭球形线圈的自感系数

江俊勤   

  1. 广东第二师范学院物理与信息工程系,广东广州510303
  • 收稿日期:2018-07-03 修回日期:2018-10-19 出版日期:2019-05-20 发布日期:2019-06-11
  • 作者简介:江俊勤( 1962-) ,男,广东揭阳人,广东第二师范学院物理与信息工程系教授,从事理论物理教学和规
  • 基金资助:
    广东省高等学校专业综合改革试点项目( XM060012 物理学)资助

Self-inductance of tightly wound ellipsoidal coil

JIANG Jun-qin   

  1. Department of Physics and Information Engineering,Guangdong University of Education,Guangzhou,Guangdong 510303,China
  • Received:2018-07-03 Revised:2018-10-19 Online:2019-05-20 Published:2019-06-11

摘要: 从电流元相互作用能量的观念出发,推导出椭球形密绕线圈自感系数的积分表达式. 利用Mathematica 10.3 杰出的

符号运算和数值计算能力、卓越的数字绘图功能,先把对方位角φ 的积分结果表达为第一类和第二类完全椭圆积分的线性组

合,进而对自感系数进行数值研究. 计算并讨论了自感系数随椭球形线圈几何形状( c /a) 的变化关系,结果表明: 当c /a = 1.7

时单位体积的自感系数最小. 最后给出了方便实用的自感系数多项式插值函数.

关键词: 椭球形线圈, 自感系数, 椭圆积分, 数值分析, 多项式插值函数

Abstract: Based on the viewpoint of interaction energy of the current element,the integral expression of the self

-inductance for a tightly wound ellipsoidal coil is derived. By using mathematica 10.3,the integral result for the azimuth

angle  is expressed as the linear combination of the first and the second kinds of complete elliptic integral,

and then the self-inductance is numerically investigated. The axis ratio ( c /a) dependence of the self-inductance is

calculated and discussed. This result shows that when c /a = 1. 7,the self - inductance per unit volume is the

minimum. Finally,a convenient and practical polynomial interpolation function for self-inductance is given.

Key words: ellipsoidal coil, self - inductance, Elliptic integral, numerical analysis, polynomial interpolation function